Top-down parsing
wikipedia Top-down parsing
In computer science, top-down parsing is a parsing strategy where one first looks at the highest level of the parse tree and works down the parse tree by using the rewriting rules of a formal grammar.[1] LL parsers are a type of parser that uses a top-down parsing strategy.
NOTE: Rewriting rules means expanding, substituting an nonterminal symbol with production body.
Top-down parsing is a strategy of analyzing unknown data relationships by hypothesizing general parse tree structures and then considering whether the known fundamental structures are compatible with the hypothesis. It occurs in the analysis of both natural languages and computer languages.
Top-down parsing can be viewed as an attempt to find left-most derivations of an input-stream by searching for parse-trees using a top-down expansion of the given formal grammar rules. Inclusive choice is used to accommodate ambiguity by expanding all alternative right-hand-sides of grammar rules.[2]
Simple implementations of top-down parsing do not terminate for left-recursive grammars, and top-down parsing with backtracking may have exponential time complexity with respect to the length of the input for ambiguous CFGs.[3] However, more sophisticated top-down parsers have been created by Frost, Hafiz, and Callaghan [4][5] which do accommodate ambiguity and left recursion in polynomial time and which generate polynomial-sized representations of the potentially exponential number of parse trees.