Skip to content

关于本章

graph search algorithm是非常之多的,因此需要首先建立起一个完整的视图,本章主要参考如下两篇文章:

1、umn CSci 4511w: Class Notes on Search

2、washington Search: Cost & Heuristics

3、wikipedia graph and tree search algorithm

参见下面的"wikipedia graph and tree search algorithm"段

Relation-based algorithm model

graph search algorithm是典型的Relation-based algorithm model(参见Relation-structure-computation\Computation\index.md)。

wikipedia graph and tree search algorithm

Graph and tree search algorithms
α–β A* B* Backtracking Beam Bellman–Ford Best-first Bidirectional Borůvka Branch & bound BFS British Museum D* DFS Dijkstra Edmonds Floyd–Warshall Fringe search Hill climbing IDA* Iterative deepening Johnson Jump point Kruskal Lexicographic BFS LPA* Prim SMA*
Listings
Graph algorithms Search algorithms List of graph algorithms
Related topics
Dynamic programming Graph traversal Tree traversal Search games

Classification

分类方法是参考的:umn CSci 4511w: Class Notes on Search “3. classes of search algorithms.”。

uninformed VS informed

uninformed 即 Blind search

informed 即 Heuristic search

类别 Example 说明
Blind search - Depth first search (DFS)
- Breadth first search (BFS)
- Iterative deepening depth-first search (IDS)
Heuristic search - Best first search
- Uniform cost search (UCS)
- Greedy search
- A*
- Iterative Deepening A* (IDA*)
- Beam search
- Hill climbing

上述example是参考的washington Search: Cost & Heuristics

local VS global

类别 Example 说明
local - greedy
- hill-climbing
global - uniform cost
- A*

与此相关的是:局部最优与全局最优。

systematic VS stochastic

类别 Example 说明
systematic - depth-first
- A*
stochastic - genetic algorithms(遗传算法)