Partition of a set
对于"partition of a set",可以添加如下限制条件:
1、Noncrossing partition
参见 "wikipedia Noncrossing partition"
wikipedia Partition of a set
NOTE:
1、这篇文章进行了系统的分析
The 52 partitions of a set with 5 elements. A colored region indicates a subset of X, forming a member of the enclosing partition. Uncolored dots indicate single-element subsets. The first shown partition contains five single-element subsets; the last partition contains one subset having five elements.
NOTE:
1、上述其实就是bell number
Counting partitions
The total number of partitions of an n-element set is the Bell number Bn. The first several Bell numbers are *B*0 = 1, *B*1 = 1, *B*2 = 2, *B*3 = 5, *B*4 = 15, *B*5 = 52, and *B*6 = 203 (sequence A000110 in the OEIS). Bell numbers satisfy the recursion $$ B_{n+1}=\sum {k=0}^{n}{n \choose k}B{k} $$
NOTE:
一、上述式子中的 {n \choose k} 表示的是combination?比如 C^4_9,从9个里面选4个?
应该不是的
二、关于它的递归公式的推导,参见:
1、cnblogs 集合划分问题
2、
计算机算法设计与分析-习题-2-7&2-8集合划分问题
章节
The number of noncrossing partitions
The number of noncrossing partitions of an n-element set is the Catalan number Cn.
NOTE: 下面会进行说明
wikipedia Noncrossing partition
NOTE:
对于这种,等价于"tree and 括号-Nested parentheses",对应的是Catalan number。