Skip to content

Partition of a set

对于"partition of a set",可以添加如下限制条件:

1、Noncrossing partition

参见 "wikipedia Noncrossing partition"

wikipedia Partition of a set

NOTE:

1、这篇文章进行了系统的分析

The 52 partitions of a set with 5 elements. A colored region indicates a subset of X, forming a member of the enclosing partition. Uncolored dots indicate single-element subsets. The first shown partition contains five single-element subsets; the last partition contains one subset having five elements.

NOTE:

1、上述其实就是bell number

Counting partitions

The total number of partitions of an n-element set is the Bell number Bn. The first several Bell numbers are *B*0 = 1, *B*1 = 1, *B*2 = 2, *B*3 = 5, *B*4 = 15, *B*5 = 52, and *B*6 = 203 (sequence A000110 in the OEIS). Bell numbers satisfy the recursion $$ B_{n+1}=\sum {k=0}^{n}{n \choose k}B{k} $$

NOTE:

一、上述式子中的 {n \choose k} 表示的是combination?比如 C^4_9,从9个里面选4个?

应该不是的

二、关于它的递归公式的推导,参见:

1、cnblogs 集合划分问题

2、计算机算法设计与分析-习题-2-7&2-8集合划分问题 章节

The number of noncrossing partitions

The number of noncrossing partitions of an n-element set is the Catalan number Cn.

NOTE: 下面会进行说明

wikipedia Noncrossing partition

NOTE:

对于这种,等价于"tree and 括号-Nested parentheses",对应的是Catalan number。