labuladong 经典动态规划:0-1背包问题的变体
上篇文章 经典动态规划:0-1 背包问题 详解了通用的 0-1 背包问题,今天来看看背包问题的思想能够如何运用到其他算法题目。
NOTE:
leetcode 416. 分割等和子集 中等
一、问题分析
先看一下题目:
那么对于这个问题,我们可以先对集合求和,得出sum
,把问题转化为背包问题:
给一个可装载重量为sum/2
的背包和N
个物品,每个物品的重量为nums[i]
。现在让你装物品,是否存在一种装法,能够恰好将背包装满?
你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。
二、解法分析
第一步要明确两点,「状态」和「选择」。
这个前文 经典动态规划:0-1 背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。
NOTE:
我之前一直把dp table记录的值称为**状态**,显然它是随着**选择**而变化的;选择想来,其实所谓**状态**其实就是"变量",它既包括自变量,有包括因变量。
第二步要明确dp
数组的定义。
按照背包问题的套路,可以给出如下定义:
dp[i][j] = x
表示,对于前i
个物品,当前背包的容量为j
时,若x
为true
,则说明可以恰好将背包装满,若x
为false
,则说明不能恰好将背包装满。
比如说,如果dp[4][9] = true
,其含义为:对于容量为 9 的背包,若只是用前 4 个物品,可以有一种方法把背包恰好装满。
或者说对于本题,含义是对于给定的集合中,若只对前 4 个数字进行选择,存在一个子集的和可以恰好凑出 9。
根据这个定义,我们想求的最终答案就是dp[N][sum/2]
。
base case
NOTE:
这个base case是容易出现错误的地方,我第一次写的时候就弄错了;
首先明白"装满"的含义: 所谓装满,即背包中没有空间了,即此时它的空间是0;对于这个问题,它要求的是能否装满,显然,当空间剩余0的时候,就能够装满了,显然需要将
dp[..][0] = true
。至于
dp[0][..] = false
,显然剩余空间非0,表示没有装满,显然就应该是false;另外需要注意的是:
dp[0][0]
的值必须是true
,表示装满了。
base case 就是dp[..][0] = true
和dp[0][..] = false
,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。
第三步,根据「选择」,思考状态转移的逻辑。
回想刚才的dp
数组含义,可以根据「选择」对dp[i][j]
得到以下状态转移:
如果不把nums[i]
算入子集,或者说你不把这第i
个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态dp[i-1][j]
,继承之前的结果。
如果把nums[i]
算入子集,或者说你把这第i
个物品装入了背包,那么是否能够恰好装满背包,取决于状态dp[i - 1][j-nums[i-1]]
。
首先,由于i
是从 1 开始的,而数组索引是从 0 开始的,所以第i
个物品的重量应该是nums[i-1]
,这一点不要搞混。
dp[i - 1][j-nums[i-1]]
也很好理解:你如果装了第i
个物品,就要看背包的剩余重量j - nums[i-1]
限制下是否能够被恰好装满。
换句话说,如果j - nums[i-1]
的重量可以被恰好装满,那么只要把第i
个物品装进去,也可恰好装满j
的重量;否则的话,重量j
肯定是装不满的。
最后一步,把伪码翻译成代码,处理一些边界情况。
以下是我的 C++ 代码,完全翻译了之前的思路,并处理了一些边界情况:
bool canPartition(vector<int>& nums) {
int sum = 0;
for (int num : nums) sum += num;
// 和为奇数时,不可能划分成两个和相等的集合
if (sum % 2 != 0) return false;
int n = nums.size();
sum = sum / 2;
vector<vector<bool>>
dp(n + 1, vector<bool>(sum + 1, false));
// base case
for (int i = 0; i <= n; i++)
dp[i][0] = true;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= sum; j++) {
if (j - nums[i - 1] < 0) {
// 背包容量不足,不能装入第 i 个物品
dp[i][j] = dp[i - 1][j];
} else {
// 装入或不装入背包
dp[i][j] = dp[i - 1][j] || dp[i - 1][j-nums[i-1]];
}
}
}
return dp[n][sum];
}
三、进行状态压缩
再进一步,是否可以优化这个代码呢?注意到dp[i][j]
都是通过上一行dp[i-1][..]
转移过来的,之前的数据都不会再使用了。
所以,我们可以进行状态压缩,将二维dp
数组压缩为一维,节约空间复杂度:
bool canPartition(vector<int>& nums) {
int sum = 0, n = nums.size();
for (int num : nums) sum += num;
if (sum % 2 != 0) return false;
sum = sum / 2;
vector<bool> dp(sum + 1, false);
// base case
dp[0] = true;
for (int i = 0; i < n; i++)
for (int j = sum; j >= 0; j--)
if (j - nums[i] >= 0)
dp[j] = dp[j] || dp[j - nums[i]];
return dp[sum];
}
NOTE:
需要注意,上述程序看起来简短,实际上蕴藏玄机,我第一次写的时候,就出现了错误;它的玄机在:
for (int j = sum; j >= 0; j--)
它是从后往前进行计算,这样它就可以使用"上一行"的值了
需要对比前后代码才能够体会它的奥妙。
这就是状态压缩,其实这段代码和之前的解法思路完全相同,只在一行dp
数组上操作,i
每进行一轮迭代,dp[j]
其实就相当于dp[i-1][j]
,所以只需要一维数组就够用了。
唯一需要注意的是j
应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果。
至此,子集切割的问题就完全解决了,时间复杂度 O(n*sum),空间复杂度 O(sum)。