labuladong 二叉树的题,就那几个框架,枯燥至极
PS:一般语境下,单单前序遍历结果是不能还原二叉树结构的,因为缺少空指针的信息,至少要得到前、中、后序遍历中的两种才能还原二叉树。但是这里的 node
列表包含空指针的信息,所以只使用 node
列表就可以还原二叉树。
NOTE:
1、参见 leetcode 105. 从前序与中序遍历序列构造二叉树,其中就是给出了两个不含
null
的前序、中序遍历结果来还原二叉树。
一、题目描述
NOTE:
原题: LeetCode 297. 二叉树的序列化与反序列化 困难
力扣第 297 题「二叉树的序列化与反序列化」就是给你输入一棵二叉树的根节点 root
,要求你实现如下一个类:
public class Codec {
// 把一棵二叉树序列化成字符串
public String serialize(TreeNode root) {}
// 把字符串反序列化成二叉树
public TreeNode deserialize(String data) {}
}
我们可以用 serialize
方法将二叉树序列化成字符串,用 deserialize
方法将序列化的字符串反序列化成二叉树,至于以什么格式序列化和反序列化,这个完全由你决定。
比如说输入如下这样一棵二叉树:
serialize
方法也许会把它序列化成字符串 2,1,#,6,3,#,#
,其中 #
表示 null
指针,那么把这个字符串再输入 deserialize
方法,依然可以还原出这棵二叉树。也就是说,这两个方法会成对儿使用,你只要保证他俩能够**自洽**就行了。
NOTE:
自洽: self consistent
想象一下,二叉树结该是一个二维平面内的结构,而序列化出来的字符串是一个线性的一维结构。所谓的序列化不过就是把结构化的数据「打平」,其实就是在考察二叉树的遍历方式。
NOTE:
non-linear structure-linearization-traverse flatten
二叉树的遍历方式有哪些?递归遍历方式有**前序遍历**,中序遍历,后序遍历;迭代方式一般是层级遍历。本文就把这些方式都尝试一遍,来实现 serialize
方法和 deserialize
方法。
二、前序遍历解法
serialize
至此,我们已经可以写出序列化函数 serialize
的代码了:
String SEP = ",";
String NULL = "#";
/* 主函数,将二叉树序列化为字符串 */
String serialize(TreeNode root) {
StringBuilder sb = new StringBuilder();
serialize(root, sb);
return sb.toString();
}
/* 辅助函数,将二叉树存入 StringBuilder */
void serialize(TreeNode root, StringBuilder sb) {
if (root == null) {
sb.append(NULL).append(SEP);
return;
}
/****** 前序遍历位置 ******/
sb.append(root.val).append(SEP);
/***********************/
serialize(root.left, sb);
serialize(root.right, sb);
}
deserialize
首先我们可以把字符串转化成列表:
String data = "1,2,#,4,#,#,3,#,#,";
String[] nodes = data.split(",");
这样,nodes
列表就是二叉树的前序遍历结果,问题转化为:如何通过二叉树的前序遍历结果还原一棵二叉树?
PS:一般语境下,单单前序遍历结果是不能还原二叉树结构的,因为缺少空指针的信息,至少要得到前、中、后序遍历中的两种才能还原二叉树。但是这里的
node
列表包含空指针的信息,所以只使用node
列表就可以还原二叉树。
根据我们刚才的分析,nodes
列表就是一棵打平的二叉树:
NOTE:
一、上述图片展示了recursive definition,它是能够帮助我们理解下面的source code
1、先完成左子树的构造,再完成右子树的构造
那么,反序列化过程也是一样,先确定根节点 root
,然后遵循前序遍历的规则,递归生成左右子树即可:
/* 主函数,将字符串反序列化为二叉树结构 */
TreeNode deserialize(String data) {
// 将字符串转化成列表
LinkedList<String> nodes = new LinkedList<>();
for (String s : data.split(SEP)) {
nodes.addLast(s);
}
return deserialize(nodes);
}
/* 辅助函数,通过 nodes 列表构造二叉树 */
TreeNode deserialize(LinkedList<String> nodes) {
if (nodes.isEmpty()) return null;
/****** 前序遍历位置 ******/
// 列表最左侧就是根节点
String first = nodes.removeFirst();
if (first.equals(NULL)) return null;
TreeNode root = new TreeNode(Integer.parseInt(first));
/***********************/
root.left = deserialize(nodes);
root.right = deserialize(nodes);
return root;
}
我们发现,根据树的递归性质,nodes
列表的第一个元素就是一棵树的根节点,所以只要将列表的第一个元素取出作为根节点,剩下的交给递归函数去解决即可。
NOTE:
一、序列化的结构是: root、left、right
三、后序遍历解法
四、中序遍历解法
先说结论,中序遍历的方式行不通,因为无法实现反序列化方法 deserialize
。
序列化方法 serialize
依然容易,只要把字符串的拼接操作放到中序遍历的位置就行了:
/* 辅助函数,将二叉树存入 StringBuilder */
void serialize(TreeNode root, StringBuilder sb) {
if (root == null) {
sb.append(NULL).append(SEP);
return;
}
serialize(root.left, sb);
/****** 中序遍历位置 ******/
sb.append(root.val).append(SEP);
/***********************/
serialize(root.right, sb);
}
但是,我们刚才说了,要想实现反序列方法,首先要构造 root
节点。前序遍历得到的 nodes
列表中,第一个元素是 root
节点的值;后序遍历得到的 nodes
列表中,最后一个元素是 root
节点的值。
你看上面这段中序遍历的代码,root
的值被夹在两棵子树的中间,也就是在 nodes
列表的中间,我们不知道确切的索引位置,所以无法找到 root
节点,也就无法进行反序列化。
五、层级遍历解法
首先,先写出层级遍历二叉树的代码框架:
void traverse(TreeNode root) {
if (root == null) return;
// 初始化队列,将 root 加入队列
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
while (!q.isEmpty()) {
TreeNode cur = q.poll();
/* 层级遍历代码位置 */
System.out.println(root.val);
/*****************/
if (cur.left != null) {
q.offer(cur.left);
}
if (cur.right != null) {
q.offer(cur.right);
}
}
}
上述代码是标准的二叉树层级遍历框架,从上到下,从左到右打印每一层二叉树节点的值,可以看到,队列 q
中不会存在 null 指针。
不过我们在反序列化的过程中是需要记录空指针 null 的,所以可以把标准的层级遍历框架略作修改:
void traverse(TreeNode root) {
if (root == null) return;
// 初始化队列,将 root 加入队列
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
while (!q.isEmpty()) {
TreeNode cur = q.poll();
/* 层级遍历代码位置 */
if (cur == null) continue;
System.out.println(root.val);
/*****************/
q.offer(cur.left);
q.offer(cur.right);
}
}
这样也可以完成层级遍历,只不过我们把对空指针的检验从「将元素加入队列」的时候改成了「从队列取出元素」的时候。
那么我们完全仿照这个框架即可写出序列化方法:
String SEP = ",";
String NULL = "#";
/* 将二叉树序列化为字符串 */
String serialize(TreeNode root) {
if (root == null) return "";
StringBuilder sb = new StringBuilder();
// 初始化队列,将 root 加入队列
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
while (!q.isEmpty()) {
TreeNode cur = q.poll();
/* 层级遍历代码位置 */
if (cur == null) {
sb.append(NULL).append(SEP);
continue;
}
sb.append(cur.val).append(SEP);
/*****************/
q.offer(cur.left);
q.offer(cur.right);
}
return sb.toString();
}
层级遍历序列化得出的结果如下图:
可以看到,每一个非空节点都会对应两个子节点,那么反序列化的思路也是用队列进行层级遍历,同时用索引 i
记录对应子节点的位置:
NOTE:
一、
构造出节点1: 它包含子节点2、3
构造出节点2: 它包含子节点#、4
构造出节点3: 它包含子节点#、#
二、
i
肯定是单调递增的三、下面的source code展示的是自顶向下构造二叉树
四、
// 第一个元素就是 root 的值 TreeNode root = new TreeNode(Integer.parseInt(nodes[0])); // 队列 q 记录父节点,将 root 加入队列 Queue<TreeNode> q = new LinkedList<>(); q.offer(root);
root、第0层
/* 将字符串反序列化为二叉树结构 */
TreeNode deserialize(String data) {
if (data.isEmpty()) return null;
String[] nodes = data.split(SEP);
// 第一个元素就是 root 的值
TreeNode root = new TreeNode(Integer.parseInt(nodes[0]));
// 队列 q 记录父节点,将 root 加入队列
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
for (int i = 1; i < nodes.length; ) {
// 队列中存的都是父节点
TreeNode parent = q.poll();
// 父节点对应的左侧子节点的值
String left = nodes[i++];
if (!left.equals(NULL)) {
parent.left = new TreeNode(Integer.parseInt(left));
q.offer(parent.left);
} else {
parent.left = null;
}
// 父节点对应的右侧子节点的值
String right = nodes[i++];
if (!right.equals(NULL)) {
parent.right = new TreeNode(Integer.parseInt(right));
q.offer(parent.right);
} else {
parent.right = null;
}
}
return root;
}
这段代码可以考验一下你的框架思维。仔细看一看 for 循环部分的代码,发现这不就是标准层级遍历的代码衍生出来的嘛:
while (!q.isEmpty()) {
TreeNode cur = q.poll();
if (cur.left != null) {
q.offer(cur.left);
}
if (cur.right != null) {
q.offer(cur.right);
}
}
只不过,标准的层级遍历在操作二叉树节点 TreeNode
,而我们的函数在操作 nodes[i]
,这也恰恰是反序列化的目的嘛。
到这里,我们对于二叉树的序列化和反序列化的几种方法就全部讲完了。
总结
上述所展示的各种 序列化 和 反序列化 算法,采用的是相同的逻辑,比如BFS,它的序列化 和 反序列化逻辑是相同的;