Skip to content

labuladong 手把手刷二叉搜索树(第一期)

NOTE:

LeetCode 230. 二叉搜索树中第K小的元素 中等

LeetCode 538. 把二叉搜索树转换为累加树 中等

寻找第 K 小的元素

首先是力扣第 230 题「二叉搜索树中第K小的元素」,看下题目:

Image

这个需求很常见吧,一个直接的思路就是升序排序,然后找第k个元素呗。BST 的中序遍历其实就是升序排序的结果,找第k个元素肯定不是什么难事。

按照这个思路,可以直接写出代码:

int kthSmallest(TreeNode root, int k) {
    // 利用 BST 的中序遍历特性
    traverse(root, k);
    return res;
}

// 记录结果
int res = 0;
// 记录当前元素的排名
int rank = 0;
void traverse(TreeNode root, int k) {
    if (root == null) {
        return;
    }
    traverse(root.left, k);
    /* 中序遍历代码位置 */
    rank++;
    if (k == rank) {
        // 找到第 k 小的元素
        res = root.val;
        return;
    }
    /*****************/
    traverse(root.right, k);
}

这道题就做完了,不过呢,还是要多说几句,因为**这个解法并不是最高效的解法,而是仅仅适用于这道题。**

更加高效的解法

NOTE:

一、典型的以空间换时间,skip list中,也有类似的优化方式,参见 "wikipedia Skip list # Indexable skiplist" 章节

我们旧文 高效计算数据流的中位数 中就提过今天的这个问题:

如果让你实现一个在二叉搜索树中通过排名计算对应元素的方法select(int k),你会怎么设计?

如果按照我们刚才说的方法,利用「BST 中序遍历就是升序排序结果」这个性质,每次寻找第k小的元素都要中序遍历一次,最坏的时间复杂度是O(N)N是 BST 的节点个数。

那么回到这个问题,想找到第k小的元素,或者说找到排名为k的元素,如果想达到对数级复杂度,关键也在于每个节点得知道他自己排第几。

比如说你让我查找排名为k的元素,当前节点知道自己排名第m,那么我可以比较mk的大小:

1、如果m == k,显然就是找到了第k个元素,返回当前节点就行了。

2、如果k < m,那说明排名第k的元素在左子树,所以可以去左子树搜索第k个元素。

3、如果k > m,那说明排名第k的元素在右子树,所以可以去右子树搜索第k - m - 1个元素。

这样就可以将时间复杂度降到O(logN)了。

那么,如何让每一个节点知道自己的排名呢?

这就是我们之前说的,需要在二叉树节点中维护额外信息。每个节点需要记录,以自己为根的这棵二叉树有多少个节点

也就是说,我们TreeNode中的字段应该如下:

class TreeNode {
    int val;
    // 以该节点为根的树的节点总数
    int size;
    TreeNode left;
    TreeNode right;
}

有了size字段,外加 BST 节点左小右大的性质,对于每个节点node就可以通过node.left推导出node的排名,从而做到我们刚才说到的对数级算法。

当然,size字段需要在增删元素的时候需要被正确维护,力扣提供的TreeNode是没有size这个字段的,所以我们这道题就只能利用 BST 中序遍历的特性实现了,但是我们上面说到的优化思路是 BST 的常见操作,还是有必要理解的。

BST 转化累加树

力扣第 538 题和 1038 题都是这道题,完全一样,你可以把它们一块做掉。看下题目:

Image

题目应该不难理解,比如图中的节点 5,转化成累加树的话,比 5 大的节点有 6,7,8,加上 5 本身,所以累加树上这个节点的值应该是 5+6+7+8=26。

我们需要把 BST 转化成累加树,函数签名如下:

TreeNode convertBST(TreeNode root)

按照二叉树的通用思路,需要思考每个节点应该做什么,但是这道题上很难想到什么思路。

BST 的每个节点左小右大,这似乎是一个有用的信息,既然累加和是计算大于等于当前值的所有元素之和,那么每个节点都去计算右子树的和,不就行了吗?

这是不行的。对于一个节点来说,确实右子树都是比它大的元素,但问题是它的父节点也可能是比它大的元素呀?这个没法确定的,我们又没有触达父节点的指针,所以二叉树的通用思路在这里用不了。

其实,正确的解法很简单,还是利用 BST 的中序遍历特性

刚才我们说了 BST 的中序遍历代码可以**升序**打印节点的值:

void traverse(TreeNode root) {
    if (root == null) return;
    traverse(root.left);
    // 中序遍历代码位置
    print(root.val);
    traverse(root.right);
}

那如果我想**降序**打印节点的值怎么办?

很简单,只要把递归顺序改一下就行了:

void traverse(TreeNode root) {
    if (root == null) return;
    // 先递归遍历右子树
    traverse(root.right);
    // 中序遍历代码位置
    print(root.val);
    // 后递归遍历左子树
    traverse(root.left);
}

这段代码可以从大到小降序打印 BST 节点的值,如果维护一个外部累加变量sum,然后把sum赋值给 BST 中的每一个节点,不就将 BST 转化成累加树了吗

看下代码就明白了:

TreeNode convertBST(TreeNode root) {
    traverse(root);
    return root;
}

// 记录累加和
int sum = 0;
void traverse(TreeNode root) {
    if (root == null) {
        return;
    }
    traverse(root.right);
    // 维护累加和
    sum += root.val;
    // 将 BST 转化成累加树
    root.val = sum;
    traverse(root.left);
}

这道题就解决了,核心还是 BST 的中序遍历特性,只不过我们修改了递归顺序,降序遍历 BST 的元素值,从而契合题目累加树的要求。

简单总结下吧,BST 相关的问题,要么利用 BST 左小右大的特性提升算法效率,要么利用中序遍历的特性满足题目的要求,也就这么些事儿吧。