Skip to content

std::promise

cppreference std::promise

The class template std::promise provides a facility to store a value or an exception that is later acquired asynchronously via a std::future object created by the std::promise object. Note that the std::promise object is meant to be used only once.

NOTE:

一、"the std::promise object is meant to be used only once"是它的一个特点,或者是弱点,如果重复set_value,它就会throw exception的,因此这在需要重复set_value的时候:

1、不能使用std::promise

2、每次重新建立future-promise channel

Each promise is associated with a shared state, which contains some state information and a result which may be not yet evaluated, evaluated to a value (possibly void) or evaluated to an exception. A promise may do three things with the shared state:

1 make ready: the promise stores the result or the exception in the shared state. Marks the state ready and unblocks any thread waiting on a future associated with the shared state.

2 release: the promise gives up its reference to the shared state. If this was the last such reference, the shared state is destroyed. Unless this was a shared state created by std::async which is not yet ready, this operation does not block.

NOTE: reference count

3 abandon: the promise stores the exception of type std::future_error with error code std::future_errc::broken_promise, makes the shared state ready, and then releases it.

The promise is the "push" end of the promise-future communication channel: the operation that stores a value in the shared state synchronizes-with (as defined in std::memory_order) the successful return from any function that is waiting on the shared state (such as std::future::get). Concurrent access to the same shared state may conflict otherwise: for example multiple callers of std::shared_future::get must either all be read-only or provide external synchronization.

NOTE: Producer-consumer model。

Example

This example shows how promise<int> can be used as signals between threads.

#include <vector>
#include <thread>
#include <future>
#include <numeric>
#include <iostream>
#include <chrono>

void accumulate(std::vector<int>::iterator first, std::vector<int>::iterator last, std::promise<int> accumulate_promise)
{
    int sum = std::accumulate(first, last, 0);
    accumulate_promise.set_value(sum);  // Notify future
}

void do_work(std::promise<void> barrier)
{
    std::this_thread::sleep_for(std::chrono::seconds(1));
    barrier.set_value();
}

int main()
{
    // Demonstrate using promise<int> to transmit a result between threads.
    std::vector<int> numbers = { 1, 2, 3, 4, 5, 6 };
    std::promise<int> accumulate_promise;
    std::future<int> accumulate_future = accumulate_promise.get_future();
    std::thread work_thread(accumulate, numbers.begin(), numbers.end(), std::move(accumulate_promise));

    // future::get() will wait until the future has a valid result and retrieves it.
    // Calling wait() before get() is not needed
    //accumulate_future.wait();  // wait for result
    std::cout << "result=" << accumulate_future.get() << '\n';
    work_thread.join();  // wait for thread completion

    // Demonstrate using promise<void> to signal state between threads.
    std::promise<void> barrier;
    std::future<void> barrier_future = barrier.get_future();
    std::thread new_work_thread(do_work, std::move(barrier));
    barrier_future.wait();
    new_work_thread.join();
}