std::promise
cppreference std::promise
The class template std::promise
provides a facility to store a value or an exception that is later acquired asynchronously via a std::future object created by the std::promise
object. Note that the std::promise
object is meant to be used only once.
NOTE:
一、"the
std::promise
object is meant to be used only once"是它的一个特点,或者是弱点,如果重复set_value
,它就会throw exception的,因此这在需要重复set_value
的时候:1、不能使用
std::promise
2、每次重新建立future-promise channel
Each promise is associated with a shared state, which contains some state information and a result which may be not yet evaluated, evaluated to a value (possibly void) or evaluated to an exception. A promise may do three things with the shared state:
1 make ready: the promise stores the result or the exception in the shared state. Marks the state ready and unblocks any thread waiting on a future associated with the shared state.
2 release: the promise gives up its reference to the shared state. If this was the last such reference, the shared state is destroyed. Unless this was a shared state created by std::async which is not yet ready, this operation does not block.
NOTE: reference count
3 abandon: the promise stores the exception of type std::future_error with error code std::future_errc::broken_promise, makes the shared state ready, and then releases it.
The promise is the "push" end of the promise-future communication channel: the operation that stores a value in the shared state synchronizes-with (as defined in std::memory_order) the successful return from any function that is waiting on the shared state (such as std::future::get). Concurrent access to the same shared state may conflict otherwise: for example multiple callers of std::shared_future::get must either all be read-only or provide external synchronization.
NOTE: Producer-consumer model。
Example
This example shows how promise<int>
can be used as signals between threads.
#include <vector>
#include <thread>
#include <future>
#include <numeric>
#include <iostream>
#include <chrono>
void accumulate(std::vector<int>::iterator first, std::vector<int>::iterator last, std::promise<int> accumulate_promise)
{
int sum = std::accumulate(first, last, 0);
accumulate_promise.set_value(sum); // Notify future
}
void do_work(std::promise<void> barrier)
{
std::this_thread::sleep_for(std::chrono::seconds(1));
barrier.set_value();
}
int main()
{
// Demonstrate using promise<int> to transmit a result between threads.
std::vector<int> numbers = { 1, 2, 3, 4, 5, 6 };
std::promise<int> accumulate_promise;
std::future<int> accumulate_future = accumulate_promise.get_future();
std::thread work_thread(accumulate, numbers.begin(), numbers.end(), std::move(accumulate_promise));
// future::get() will wait until the future has a valid result and retrieves it.
// Calling wait() before get() is not needed
//accumulate_future.wait(); // wait for result
std::cout << "result=" << accumulate_future.get() << '\n';
work_thread.join(); // wait for thread completion
// Demonstrate using promise<void> to signal state between threads.
std::promise<void> barrier;
std::future<void> barrier_future = barrier.get_future();
std::thread new_work_thread(do_work, std::move(barrier));
barrier_future.wait();
new_work_thread.join();
}